Lumache del Pascal |
Pagina 1 di 2 Il punto A è vincolato dall'asta AC=r, imperniata al piano in C, alla circonferenza γ di raggio r. L'asta s, incernierata in A alla CA , è vincolata a passare per un punto fisso O del piano, scelto sulla circonferenza γ. Quando A descrive γ (circonferenza base), ognuno dei punti P e Q scelti su s in modo che siano simmetrici rispetto ad A, descrive una lumaca di Pascal, che presenta in O (polo) un punto doppio isolato, un nodo o una cuspide se risulta rispettivamente AP>2r, AP<2r o AP=2r.
Si possono dimostrare i teoremi: 1) le lumache del Pascal sono podarie di una circonferenza rispetto a un punto del suo piano ;
|