Macchine Matematiche

  • Aumenta dimensione caratteri
  • Dimensione caratteri predefinita
  • Diminuisci dimensione caratteri

Composizione di tre simmetrie assiali: assi paralleli

La macchina illustra il seguente teorema: "Il prodotto di tre simmetrie assiali ortogonali con assi di simmetria paralleli e aventi distanze assegnate è una simmetria assiale ortogonale con asse parallelo ai tre precedenti e avente dal primo distanza uguale a quella fra il secondo e il terzo". Tre macchine per la simmetria assiale ortogonale di assi paralleli s1,s2,s3 e aventi distanze assegnate d(s1,s2)= h  e d(s2,s3)= k sono collegate in modo da realizzare il prodotto delle tre simmetrie . Una quarta macchina per la simmetria, con asse s parallelo ai precedenti e fissata al piano in modo che d(s1,s)=d(s2,s3)=k è applicata ai punti P e P’ corrispondenti nel prodotto delle tre simmetrie . Muovendo P si osserva che tutto il sistema articolato si pone in movimento senza bloccarsi verificando localmente in tal modo un caso particolare del teorema.

Esplora la macchina

 

Fonti Storiche

Mail Associazione

JEvents Calendar

January 2020
S M T W T F S
29 30 31 1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31 1

Login